# Solidification and interfacial structure of *in situ* AI-4.5Cu/TiB<sub>2</sub> composite

Z. Y. CHEN\*, Y. Y. CHEN, Q. SHU, G. Y. AN

Materials Science & Technology College Harbin Institute of Technology, Harbin 150001, People's Republic of China

D. LI, D. S. XU, Y. Y. LIU

Titanium Alloy Laboratory, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110015, People's Republic of China E-mail: czy@hope.hit.edu.cn

*In situ* particle reinforced AI-4.5Cu/TiB<sub>2</sub> composite was fabricated with TiO<sub>2</sub>, H<sub>3</sub>BO<sub>3</sub>, Na<sub>3</sub>AIF<sub>6</sub> powders and AI-4.5Cu alloy by reaction in melt. The composite can be directly casted into moulds to make composite parts. TiB<sub>2</sub> particles distribute uniformly in the matrix. The average size of TiB<sub>2</sub> particles is 0.93  $\mu$ m. At the atomic scale, TiB<sub>2</sub> is hexagonal, and exhibits hexagon or quadrilateral shape. The orientation relationships exist in the interfaces between TiB<sub>2</sub> particle and  $\alpha$ -AI, and between the reinforced small Al<sub>2</sub>Cu phase and  $\alpha$ -AI in the composite. They are  $[0\bar{3}32]_{TiB_2}//[110]_{\alpha-AI}$ ,  $(01\bar{1}1)_{TiB_2}//(002)_{\alpha-AI}$  and  $[1\bar{3}2]_{\alpha-AI}//[123]_{Al_2Cu}$ ,  $(211)_{\alpha-AI}//(111)_{Al_2Cu}$ . TiB<sub>2</sub> particle is nucleation site for  $\alpha$ -AI matrix growth in the composite. The interface between TiB<sub>2</sub> particles and the matrix is clean and well bonded. No reaction product has been found through HREM observation. This is beneficial to the strength of the composite. The as-cast AI-4.5Cu/TiB<sub>2</sub> composite exhibits mechanical excellent properties: the tensile strength is 416.7 MPa, the yield strength is 316.9 MPa, and the elongation is 3.3 pct. © *2000 Kluwer Academic Publishers* 

### 1. Introduction

The microstructure of matrixes in the metal matrix composites (MMCs) is greatly influenced by reinforcements. The reinforcement can change solidification process of matrixes. The nucleation and growth of the metal matrix and the distribution of particles in the matrix just reflect this. For example, 10 vol. pct TiB<sub>2</sub> particles can make crystallites of Ti-51.5Al-1.4Mn alloy fine [1]. Because Ti alloy can grow on the TiB<sub>2</sub> particles. In principle, the investigation of the solidification microstructures of MMCs is very important.

From strengthening principle of the composite, a basic hypothesis is that the matrix combines with the reinforcement by some way. This decides on the strength of interface and the mechanism of load transmission [2, 3].

To achieve highest strength, it is necessary to have enough interfaces binding strength. Geng [4] had studied the interface of  $SiC_p/Al$  composite fabricated by powder metallurgy. He reported that there were no  $SiO_2$ ,  $Al_2O_3$  and  $Al_4C_3$  on the interface between SiC particle and Al matrix. He found that aluminum had diffused into SiC particle, while there was no silicon or carbon in the matrix. He thought that the bond between SiC particle and Al was diffusion bonding. And he reported that the eight kinds of orientation relationships exist in the interface between SiC whisker and Al matrix. The literature on *in situ* particle reinforced composite is limited. Wang [5] had studied the interface of *in situ* TiC<sub>p</sub>/Al composite. He found that the orientation relationship was  $(111)_{Al} // (111)_{TiC}$ ,  $[011]_{Al} // [011]_{TiC}$ . In this work, we investigate the microstructure aspects and the interface of *in situ* Al-4.5Cu/TiB<sub>2</sub> composites fabricated from TiO<sub>2</sub>-H<sub>3</sub>BO<sub>3</sub>-Na<sub>3</sub>AlF<sub>6</sub>-Al by reaction in melt. The objectives are to investigate the forming mechanism of solidification microstructure of *in situ* Al-4.5Cu/TiB<sub>2</sub> composite.

# 2. Preparation of specimen and analysis method

In situ Al-4.5Cu/TiB<sub>2</sub> composite was fabricated from TiO<sub>2</sub>-H<sub>3</sub>BO<sub>3</sub>-Na<sub>3</sub>AlF<sub>6</sub>-Al system by reaction in melt [6]. The  $10 \times 10 \times 10$  mm specimens were made by machining, and mechanically polished. In addition, the specimens were extracted using NaOH water solution to get reinforced powders. X-ray diffraction (XRD) analyzes on the mechanically polished specimens and the reinforced powders. The polished specimens were observed in an optical microscope or a scanning electron microscope (SEM) to investigate the solidification microstructure of the composite.

<sup>\*</sup> Z. Y. Chen, associate professor, is in Titanium Alloy Laboratory, Institute of Metal Research, Chinese Academy of Sciences, Shenying, China, as a postdoctor.

Electric spark working made the thin foils of 0.5 mm thickness. They were then reduced to 30  $\mu$ m thickness mechanically. And they were dug to 15  $\mu$ m thickness by Gatan Dimple apparatus. The very thin foils were further reduced to make TEM or HREM specimens at little angle by ion milling technique. The microstructure and interfacial structure in the composite were studied by TEM and HREM techniques.

### 3. Solidification microstructure

Fig. 1 is XRD patterns of the composite and powders extracted from the composite. The presence  $TiB_2$  peaks indicate that  $TiB_2$  is formed in the composite.  $TiO_2$  and  $H_3BO_3$  in the raw materials have been either reduced or skimmed off before pouring. The powder extracted from the composite is  $TiB_2$ , as evidenced by the "v" peaks in Fig. 1b. There is no  $Al_2Cu$  peak in the two XRD patterns, because  $Al_2Cu$  phase is very fine or dissolved by NaOH extracting solution.  $Al_2Cu$  phase has not been identified by XRD.

From above analyses, *in situ*  $TiB_2$  particles were formed from  $TiO_2$ -H<sub>3</sub>BO<sub>3</sub>-Na<sub>3</sub>AlF<sub>6</sub>-Al system, and ascast *in situ* Al-4.5Cu/TiB<sub>2</sub> composite can be fabricated by reaction in melt.

The solidification microstructure of Al-4.5Cu/ 10vol.%TiB<sub>2</sub> composite is shown in Fig. 2. TiB<sub>2</sub> particles distribute in the matrix uniformly. They are nearly spherical shapes. The mean size of TiB<sub>2</sub> particles is 0.93  $\mu$ m, the most probable size is 0.5  $\mu$ m. The fine



*Figure 1* X-ray diffraction patterns (a) the composite (b) the extracted powders.



Figure 2 The solidification microstructure of Al-4.5Cu/TiB2 composite.

 $TiB_2$  particles are beneficial to the strength and ductility of the composite.

### 4. Microstructure and interfacial structure

To improve the properties, it is necessary to investigate the morphology of *in situ* TiB<sub>2</sub> particle and the interfacial structure between TiB<sub>2</sub> particle and the matrix. In Al-4.5Cu/TiB<sub>2</sub> composite, TiB<sub>2</sub> particle is hexagonal and tends to facet. Most of TiB<sub>2</sub> particles exist in hexagon or quadrilateral (Fig. 3). The larger surfaces of TiB<sub>2</sub> particle are low energy and compact planes. When TiB<sub>2</sub> particle is precipitated from the Al-4.5Cu melt, it develops into single crystal by the growth of the compact planes preferentially. When Al-4.5Cu/TiB<sub>2</sub> composite solidifies, TiB<sub>2</sub> particles can provide a lot of nucleation sites for Al-4.5Cu matrix growth. This makes the crystallite of the composite fine.

Fig. 4 is TEM image of Al-4.5Cu matrix. There is very fine Al<sub>2</sub>Cu phase precipitated from the matrix. The interface between Al<sub>2</sub>Cu and  $\alpha$ -Al exhibits the following orientation relationship:

$$[\bar{1}\bar{3}2_{\alpha-Al}] // [123]_{Al_2Cu}$$

$$(211)_{\alpha-Al} // (111)_{Al_2Cu}$$

Al<sub>2</sub>Cu and  $\alpha$ -Al is bond well. So the precipitation of Al<sub>2</sub>Cu can strengthen Al-4.5Cu matrix.

Fig. 5 is TEM diffraction of two phases in Al-4.5Cu/TiB<sub>2</sub> composite. The orientation relationship is:

$$\begin{array}{l} [0\bar{3}32]_{\text{TiB}_2} // [110]_{\alpha-\text{Al}} \\ (01\bar{1}1)_{\text{TiB}_2} // (002)_{\alpha-\text{Al}} \end{array}$$

Because there is an orientation relationship at the interface between TiB<sub>2</sub> particle and  $\alpha$ -Al, the interface can be a coherent one. Bramfitt [7] calculated the misfit of two-dimensional lattice, using the follow formula:

$$\delta_{(hkl)_{n}}^{(hkl)_{n}} = \sum_{i=1}^{3} \left[ \left| d[uvw]_{s}^{i} \cdot \cos\theta - d[uvw]_{n}^{i} \right| \right/ d[uvw]_{n}^{i} / 3 \right] \cdot 100\%$$
(1)



Figure 3 Morphology of TiB<sub>2</sub> particle by TEM (a) hexagon (b) quadrilateral.



Figure 4 TEM diffraction of Al-4.5Cu matrix (a) morphology of Al<sub>2</sub>Cu (b) diffraction pattern.



Figure 5 TEM diffraction of Al-4.5Cu/TiB $_2$  composite (a) morphology of TiB $_2$  particle (b) diffraction pattern.

| TABLE I | The matching | parameter of | $(01\bar{1}1)_{TiB_2}$ | and $(002)_{\alpha-A}$ |
|---------|--------------|--------------|------------------------|------------------------|
|---------|--------------|--------------|------------------------|------------------------|

| $[uvw]_{\alpha-Al}$ | [011] | [100] | [010] |
|---------------------|-------|-------|-------|
| $[uvw]_{TiB_2}$     | [011] | [101] | [110] |
| $[uvw]_{\alpha-Al}$ | 4.05  | 4.05  | 4.05  |
| $[uvw]_{TiB_2}$     | 2.037 | 2.037 | 1.515 |
| θ                   | 0     | 0     | 0     |
| $\delta(\%)$        | 1.217 | 1.217 | 1.217 |
|                     |       |       |       |



Figure 6 Interface between TiB2 particle and Al-4.5Cu matrix (HREM).

where  $(hkl)_{s}$ —the low index plane of the base;  $(hkl)_{n}$ —the low index plane of the nucleation solid;  $[uvw]_{s}$ —the low index orientation of  $(hkl)_{s}$ ;  $[uvw]_{n}$ —the low index orientation of  $(hkl)_{n}$ ;  $d[uvw]_{s}$ ,  $d[uvw]_{n}$ —the atom distance along the orientation  $[uvw]_{s}$ ,  $\theta$ —the angle between  $d[uvw]_{s}$  and  $d[uvw]_{n}$ .

The parameters of TiB<sub>2</sub> particle and  $\alpha$ -Al are substituted into formula 1,we get the results of the misfit, as shown in Table I. The lattice misfit between  $(01\overline{1}1)_{TiB_2}$  and  $(002)_{\alpha-Al}$  at  $[0\overline{3}22]_{TiB_2}$  //  $[110]_{\alpha-Al}$  is 1.217 pct. It is less than 15 pct. So the interface between TiB<sub>2</sub> particle and  $\alpha$ -Al is semi-coherent relationship.  $\alpha$ -Al can grow on the face of TiB<sub>2</sub>. That is, TiB<sub>2</sub> particle is heterogeneous core of  $\alpha$ -Al growth. The crystalline of the composite is substantially made fine.

The interface image is shown in Fig. 6. TiB<sub>2</sub> particle binds with  $\alpha$ -Al well. There is no brittle compound between them. So *in situ* TiB<sub>2</sub> can improve the strength and ductility of Al-4.5Cu/TiB<sub>2</sub> composite. Table II is the comparison of mechanical properties of Al-4.5Cu/TiB<sub>2</sub> and others composites. It can be seen that the properties of Al-4.5Cu/TiB<sub>2</sub> composite are superior to those of extruded 6061/Al<sub>2</sub>O<sub>3</sub> [8] and 2024/Al<sub>2</sub>O<sub>3</sub> [9], and much better than those of as-cast A356/SiC [10] composites.

# 5. Conclusion

1. Al-4.5Cu/TiB<sub>2</sub> composite can be fabricated from  $TiO_2$ -H<sub>3</sub>BO<sub>3</sub>-Na<sub>3</sub>AlF<sub>6</sub>-Al system by reaction in melt. The composite can be directly cast into parts. The fabricating price is very low.

2. TiB<sub>2</sub> particles distribute in the matrix uniformly. Their mean size is about 0.93  $\mu$ m in the solidification microstructure of the composite.

3. TiB<sub>2</sub> particle exhibits hexagon or quadrilateral shape at the atomic scale. The orientation relationship in the interface between TiB<sub>2</sub> particle and  $\alpha$ -Al is:

$$\begin{array}{l} [0\bar{3}32]_{TiB_2} // \, [110]_{\alpha-Al} \\ (01\bar{1}1)_{TiB_2} // \, (022)_{\alpha-Al} \end{array}$$

4. The lattice misfit between TiB<sub>2</sub> and  $\alpha$ -Al is 1.217 pct. The interface between TiB<sub>2</sub> particle and  $\alpha$ -Al is semi-coherent. TiB<sub>2</sub> particle can be nucleation site for  $\alpha$ -Al growth.

5. Al-4.5Cu/TiB<sub>2</sub> composites exhibit superior strength and ductility.

#### References

- J. D. BRYANT, L. CHRISTODOULOU and J. R. MAISANO, Scripta Metall. Mater. 24 (1990) 33.
- 2. J. H. LI and Z. X. GUO, Composites 25(9) (1994) 887.
- 3. Y. H. TENG and J. D.BOYD, *ibid*. 25(10) (1994) 906.
- 4. L. GENG, PhD thesis, Harbin Institute of Technology, China, 1990.
- 5. Z. D. WANG, PhD thesis, Harbin Institute of Technology, China,
- 1994.
   Z. Y. CHEN, PhD thesis, Harbin Institute of Technology, China,
- 1998.
- 7. B. L. BRAMFITT, Metall. Trans. 1(7) (1970) 194.
- I. A. IBRCOHIM, Particulate Reinforced Metal Matrix Composites—a Review. J. Mater. Sci. 26 (1991) 1137.
- F. M. HOSKING and F. FOLGAR PORLILLO, *ibid.* 17 (1982) 477.
- 10. YUYONG CHEN and D. D. L. CHUNG, *ibid*. 30 (1995) 4609.

Received 14 September 1999 and accepted 22 February 2000

TABLE II Properties comparison of composites

| Materials                                  | $\sigma_{\rm b}$ (MPa) | $\tau_{0.2}$ (MPa) | δ (%) | State      | References |
|--------------------------------------------|------------------------|--------------------|-------|------------|------------|
| Al-4.5Cu/5vol.%TiB2                        | 358                    | 258.3              | 1.89  | as-cast    | this work  |
| Al-4.5Cu/7vol.%TiB <sub>2</sub>            | 387.5                  | 283.3              | 2.8   | as-cast    | this work  |
| Al-4.5Cu/10vol.%TiB <sub>2</sub>           | 416.7                  | 316.9              | 3.3   | as-cast    | this work  |
| A356/10vol.%SiC                            | 303                    | 283                | 0.6   | as-cast    | 8          |
| A356/15vol.%SiC                            | 331                    | 324                | 0.3   | as-cast    | 8          |
| A356/20vol.%SiC                            | 352                    | 331                | 0.4   | as-cast    | 8          |
| A356/10vol.%SiC                            | 223                    | _                  | 4.5   | as-cast    |            |
| 2024/20wt.%Al <sub>2</sub> O <sub>3</sub>  | 207                    | _                  | 0.3   | as-cast    | 9          |
| 6061/10vol.%Al <sub>2</sub> O <sub>3</sub> | 338                    | 297                | 7.6   | s-extruded | 8          |
| 6061/20vol.%Al <sub>2</sub> O <sub>3</sub> | 379                    | 359                | 0.1   | s-extruded | 8          |
| 2024/5wt.%Al <sub>2</sub> O <sub>3</sub>   | 345                    | 249                | 8.2   | s-extruded | 10         |